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Abstract 

 
Cloud computing is a new technology that has adapted to the traditional way of service 
providing.  Service providers are responsible for managing the allocation of resources. 
Selecting suitable containers and bandwidth for job scheduling has been a challenging task for 
the service providers. There are several existing systems that have introduced many algorithms 
for resource allocation. To overcome these challenges, the proposed system introduces an 
Optimized Task Scheduling Algorithm with Deep Learning (OTS-DL). When a job is 
assigned to a Cloud Service Provider (CSP), the containers are allocated automatically. The 
article segregates the containers as' Long-Term Container (LTC)’ and 'Short-Term Container 
(STC)’ for resource allocation. The system leverages an 'Optimized Task Scheduling 
Algorithm' to maximize the resource utilisation that initially inquires for micro-task and 
macro-task dependencies. The bottleneck task is chosen and acted upon accordingly. Further, 
the system initializes a 'Deep Learning' (DL) for implementing all the progressive steps of job 
scheduling in the cloud. Further, to overcome container attacks and errors, the system 
formulates a Container Convergence (Fault Tolerance) theory with high-level security. The 
results demonstrate that the used optimization algorithm is more effective for implementing a 
complete resource allocation and solving the large-scale optimization problem of resource 
allocation and security issues. 
 

 
Keywords: Resource allocation, Containers, Micro-macro task, Optimized Job Scheduling 
Algorithm, Security. 
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1.  Introduction 

Generally, in cloud computing, cloud containers are a supporting technology for CSP and 
cloud users. Due to the utilization of containers, the cloud container has gained a high rate of 
growth online in recent years [1]. In order to account for the rise of cloud containers, some 
cloud orchestration engines, such as Docker, Mesosphere, and Kubernetes, as well as several 
other applications, are introduced in the cloud platform [2]. Cloud for resource allocation and 
business collaborations among the CSPs and users are made. Many cloud vendors such as 
Amazon, Google, and Microsoft contain globally distributed containers and can provide the 
required resources for workflows [3]. The container includes only programme tasks provided 
for necessary dependencies and task completion. A pay-per-use billing model governs the 
user's access. The model needs a proper scheduling theory to ensure cost-effective resource 
usage.  

There is always a big debate on improvising the resource utilization of cloud containers, 
task scheduling, and security maintenance. Initializing a proper job schedule on cloud 
platforms is still a key concern for the cloud service provider (CSP). When a massive number 
of tasks are handled, a reasonable resource allocation is mandatory. Static scheduling is the 
basic, traditional job scheduling method that builds a bidding relationship between the node 
and the container. The bond between the container and the node is maintained until the 
required job is unloaded or completed. After completing the task, the resources utilized by the 
container can be reused for a new task. The general form of resource allocation that works in 
the cloud is produced. In the beginning, the user seeks container availability from the service 
provider. The space allocation for the application is checked, and a suitable container is 
selected and allocated for the resource. 

The proposed theory is put into effect to address the performance issue with resource 
allocation and to keep things stable. The proposed system focuses on enhancing task 
completion, security, and the task scheduling of containerized cloud services. The main 
contribution of the paper is as follows: 

1. The proposed system categorizes container selection as long-term container (LTC) 
and short-term container (STC) selection. When a user data entry appears, the CSP 
automatically seeks container availability. According to the resource space, the 
container is allocated. The user jobs are allocated to short-term containers. The most 
frequent jobs are automatically assigned to long-term containers.  

2. The system uses an ‘Optimized job scheduling algorithm' to analyse the complexities 
and produce allocations accordingly. 

3. Furthermore, the system evaluates two dependency metrics before allocating any 
Container: 1) Micro Task Dependencies 2) Macro Task Dependencies. If the macro is 
dependent on the micro, then all the pending jobs in the micro are completed, and the 
macro job is performed. Likewise, the bottleneck dependency is completed first, and 
the job scheduling is continued according to the preferences. 

4. Deep learning (DL) is used to improve task scheduling optimization. By using DNL, 
the security issues are found and rectified once detected. 

5. A container split technique and searchable encryption technique are proposed to 
enhance resource allocation and job scheduling security. 

6. Furthermore, the system experimentally verifies the accuracy of the system prototype 
at small scales and evaluates its efficiency of allocation at large scales. 
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 The remainder of this paper, Section 2, discusses related works, the background of 
containerized cloud services, and the unique challenges. The paper further formulates the 
issues under different scenarios and analyses the efficiency of optimization job scheduling 
algorithms in Section 3. The proposed theory's implementation to justify the proposed 
algorithms' efficiency is discussed in Section 4, and experimental results are presented in 
Section 5. Section 6 discusses the work on job scheduling and concludes the paper. 
 

2.  Related work 
This section reviews the current studies on Resource Allocation in Cloud Containers in terms 
of the issue model and methods to enhance the performance of container allocation and job 
scheduling metrics. 

The researchers had much difficulty with optimizing job scheduling in the previous models. 
The works of various authors have been discussed, and assumptions have been discussed.  

Zhang et al. [4] noted a resource allocation without the arrival and departure times, and the 
applications are held only for a particular period.  

Many researchers describe how container placement is the most challenging part of 
resource allocation [5]. The paper examines the current container allocation and job 
scheduling models in terms of resource dimension, cost, and constraints. Existing studies for 
the schedule primarily have two objectives. The primary one is from the perspective of cloud 
service providers. CSPs concentrate on reducing the energy consumption of the used PMs or 
increasing resource utilization.  

Guan et al. [6] consider the energy consumption and the price of the information exchange 
between containers. Guerrero et al. [7] discuss resource optimization of containers in 
multi-cloud for micro-services-based applications, focusing on the value of the used resources 
and concentrating on the energy consumption of cloud data centers.  

Abhishek Kumar et al. [8] proposed a hybrid data security scheme called the Improved 
Attribute-Based Encryption Scheme (IABES). This model used two encryption algorithms, 
namely the Advanced Encryption Standard (AES) and the Attribute-Based Encryption (ABE) 
algorithm. Due to the hybrid model, the data could be maintained on a cloud server with 
appropriate security measures. 

Baldominos Gómez et al. [9] proposed to deploy various machine learning approaches that 
could be used to estimate the future price of Elastic Cloud Compute (EC2) at spot instances. 
The proposed model used different techniques for the linear, ridge, and lasso regressions. 
K-nearest neighbors, multilayer perceptrons, and random forests were used in the model. 

Zhang et al. [10] developed a model that combines various technologies like cryptography, 
blockchain, and the Interplanetary File System (IPFS). The proposed method is a fine-grained 
and flexible terminal data access control scheme. The scheme was based on ciphertext-policy 
attribute-based encryption (CP-ABE).  

Choudhary and Pahuja [11] proposed and developed a new Steering Convention for 
Vitality Effective Systems (SC-VFS) technique. The developed model could be used for 
detecting doppelganger attacks. The model could be used in IoT-based intelligent health 
applications, for instance, in a green corridor for transplant pushback. The model was 
advantageous as it improved vitality proficiency, which is a critical constraint in WSN 
frameworks. 
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2.1 Optimization Algorithms 
Several algorithms and approaches are used to rectify the optimization issues in cloud 
allocation. Tan et al. [12] introduced a multi-objective NSGA-II to address the multi-objective 
optimization issue. The availability of applications and the energy consumption requirements 
of container-based clouds are checked and reported to the server. This may be effective but not 
time-efficient, as it requires checking availability.  
     Niu et al. [13] stated a workflow allocation model named "Geo-aware Multiagent Task 
Allocation Approach" that focuses on large-scale scientific workflow execution in optimizing 
container-based metrics. A Cooperative Co-evolution Genetic Programming hyper-heuristic 
model has been introduced to overcome the resource allocation container (RAC) problem [14]. 
The game theory focuses on developing cooperative and non-cooperative theoretic approaches 
to scheduling, selection, and communication.  
     Mei et al. proposed an energy-aware scheduling algorithm for sporadic tasks on the dvs 
platform [15]. Zhu et al. [16] introduced a self-adapting job scheduling algorithm and dynamic 
priority scheduling for resource management. Zho et al. [17] developed a Scheduling 
Framework for Cloud Container Services. Yin et al. [18] produced job scheduling and 
resource allocation in fog computing relating to containers for manufacturing. The 
introduction of an elasticity control mechanism for cloud containers [19]. A Resource and 
Context Aware Deployment of Containerized Micro-Services was introduced [20]. 
     A locality-aware scheduling model with load balance and application ability is possible 
[21]. 
Peng Zhao et al. [22] proposed an integration model with a Multi-cloud Access Control Policy. 
The author uses an Attribute-based Evaluation Model, Four-value Logic with Extensiveness, 
and Four-value Logic Related Policy Integration Operators. Through this, the policy 
integration technique is made easy. To overcome the optimization issues, a GRA-based 
service-aware flow model (GRSA) has been proposed by WenlongKe et al. [23]. 
     In [24], Zhao et al. receive proportional allocations and assign them to fair shares. On the 
other hand, clients allocated to different queues receive allocations that maximize resource 
utilization. 
Zhang et al. [25] proposed a Private Key Generator (PKG) to handle large-scale users. Here, 
the base PKG represents the lower-level PKGs providing a proper auditing scheme. 

2.2. Cloud Security Challenges 
Cloud servers (CS) are not always trustworthy because they are not completely under the 
control of the public. Once a data owner uploads sensitive data to the cloud server, CS may not 
be able to control the full data as attacks or interruptions may occur. This may lead to 
malicious users, attackers, and cloud server providers (CSP) accessing or stealing owners' 
sensitive records or information. Consequently, the task of preserving each and every piece of 
data in cloud server environment have become much more important [26, 27].   Zhu et al. [28] 
addressed the certificate management issues and designed a searchable encryption scheme for 
proof identification.  

Wu et al. [29] created a cryptography theme related to a certificate-less crypto-system. Then, 
the existing system constructed a unique CL-SPKE technique for issues in the keyword attack. 
By implementing a random oracle model, the system gains the capacity to resist keyword 
attacks.  
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     S Muthakshi, K Mahesh, in [30] produced a Container selection (CS) process 
implementation to choose suitable containers. Further, this paper suggests that the system 
determines extensive neural learning (NL) in cloud services for cloud container selection. In 
[31], the system stated a profit/loss calculator calculating the allocation or transaction, where 
the containers are well-monitored and controlled. Further, a trustworthy container's rating, 
report, or feedback is validated and suggested to the tenant. Also, the recommendation process 
is handled as a cycle. 

3.  Method implementation 

3.1 Optimized Task Scheduling with Deep Neural Learning (OTS-DL) 

In the proposal, the system leverages a job scheduling mechanism named the Optimized Task 
Scheduling Model. When a user's data centers are used for storage, the CSP immediately 
enquires and checks for the suitability of the containerized cloud. To make the optimization 
process more evident, container segregation has been introduced. The segregation process 
helps  find the optimal solution for resource allocation and suggests the exact match for 
resource storage in the container. The system studies task completion performance. Deep 
learning (DL) is used to choose the optimal solution and perform secure resource allocation. 
     In the proposed cloud execution model, the cloud service provider (CSP) chooses and 
prioritizes the tasks according to their dependencies while assigning them. Generally, the tasks 
provided to the service provider are stated as ‘micro-task’ and ‘macro-task’. The dependencies 
between the tasks are found and prioritized accordingly. 

• Micro-Task: The small tasks are handled by Micro-tasks. Micro-tasks are completed 
before committing to larger tasks. For instance, checking the resource origin, size, 
energy consumption, resource utilization, replicas, type of the resource, etc. 

• Macro-Task: Large size tasks are assigned to Macro-tasks for handling big resources. 
The system proposes and optimized job scheduling, resource allocation, etc., 

 
Fig. 1. Proposed System Architecture 
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     There are chances that the macro-task may be dependent on the micro and vice versa. So, 
the bottleneck task dependency is checked, and priority is given to the required task at the 
required time. The bottleneck tasks are collected by initializing some classifiers with the help 
of neural learning. Then, the priority task is found and provided to the container for proper 
completion. For this execution, temporary containers can be hired, or long-term containers can 
be utilized for task completion. The above Fig. 1 demonstrates the proposed architecture, 
starting from the user requesting CSP for job scheduling and resource allocation. Then, the 
cloud service provider (CSP) classifies the resources and performs job scheduling using deep 
learning (DL). Furthermore, a job scheduling optimizer is used to optimize the jobs and assign 
tasks accordingly. The cloud container is segregated into long-term containers (LTC) and 
short-term containers (STC) and performs allocation by resource classification and size. While 
using long-term containers, there are chances of flow leakage, leading to some major security 
issues. 

3.2 Task Scheduling in Container 

The system follows container segregation for task scheduling and allocation. Here, the system 
introduces two types of containers: Short-term containers (STC) and Long-term containers 
(LTC). 

3.2.1 Short Term Container (STC) 

• Short-term containers follow normal job scheduling metrics to provide an ‘optimized 
container allocation’. 

• Generally, in a cloud execution model, CSP provides allocation for the new user data. 
When a resource is entered for allocation, the service provider immediately searches 
for availability in STC based on the size and preference of the resource. 

• Initially, the STC verifies the need for long-term containers (LTC) through machine 
learning (ML). If the task needs a long-term container, then immediately, using 
container switching, it switches to LTC and adapts the required space for allocation.  

• Entered jobs are assigned to STC for job completion. 
• STC checks for the performance, security, and trustworthiness of the user and 

performs allocation. 

3.2.2 Long-Term Container (LTC) 

• Initially, the LTC coordinates the user and the container to perform the job scheduling. 
After coordination, the ‘container migration’ is enabled, where the resources are 
validated and allocated to the users’ requirements and container availability. 

• Generally, the CSP contains some retained clients or users' jobs for resource 
allocation. Regular users are retained, and the users are mentioned as long-term users. 
These types of client resources and jobs are selected for long-term container (LTC) 
storage. The container undergoes several optimization processes for selection. 

• Once a container is chosen for the task process, CSP retains that container for 
long-term dealing with user job scheduling. 

• In case of any middle breakage from the user side or from the container utilization side, 
immediately without any hesitation, the progress is withdrawn within the minimum 
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notice period. 
• Due to the withdrawal concept, both the container and the user attain more profit. The 

main advantage of LTC is minimal search time due to pre-determined allocation. 
LTCs are long-term containers used for allocating frequent jobs. 

• CSP to allocate the correct container for the resources. 
 

Table 1. Proposed Results 

 
 
3.2.3 Feedback from both the container and the user   

 
Finally, feedback from the container side and user side to improve the implementation is 
enabled. After completion of every task scheduling process, feedback is regularly collected 
from both the user and the container. The feedback contains details about the user satisfactory 
level (container, cost-efficiency, and speed) and the container satisfactory level (cost, job size, 
etc.). 
     Furthermore, the LTC is provided with levels that are capable of container extension and 
shrinking according to the task and resource allocation. When more utilization is needed, the 
container extension is used. The system goes with container shrinking when less utilization is 
needed. Hence, LTC is proved to be more useful and effective for proper ‘optimized job 
scheduling’. 
 

Table 2. Container convergence 

 
From the above (Table 1) The jobs are initially assigned, and the processing time (ms) is set. 
The amount of setup time for tasks is defined as slack time, which can be delayed without 
causing an additional task. The container switching time is set, and the switching time is 
calculated. Heuristics are located according to the job schedule, and the current completion 
time is arranged accordingly. 

In Table 2, container clearance is done when it reaches 100. When the container limit 
exceeds the data, it is replaced by the higher-level containers according to the data size. This 
term is defined as "Container Convergence." The data in the containers is assigned, and proper 
security monitoring is ensured. 

Job Processing 
time(ms) 

Slack 
time(ms) 

Container 
switching 
time 

Process 
Completion 
delay 

Heuristics Current 
completion 
time  

1 1000 5000 0 0 1000 1000 
2 35000 175000 5000 0 40000 38000 
3 50000 250000 5000 0 60000 50000 
4 25000 125000 5000 0 0 30000 
5 10000 50000 5000 0 0 15000 

Container Container 
clearance 

Data replacement Security 
monitoring 

Container 
convergence 

1 100 1000 0 0 
2 100 5000 0 0 
3 100 5000 0 0 
4 100 60000 1 1 
5 100 20000 0 0 
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    Algorithm 1. Implementation 

Step 1: The jobs are provided as input. Then, the jobs are processed in a sequential manner. 

Step 2: The jobs are assigned for container allocation. 

Step 3: Then, the containers are set for performing the job scheduling process. 

Step 4: The UC user container subscription is completed, and job scheduling is optimized.  

Step 5: According to the container size, container switching is performed Cs. After container 
retrieval, a proper container clearance Cc is done. 

Step 6: The feedback from users and container providers is collected using deep learning. 

Step 7: When the container usage is greater than the threshold (Cu > T), a compatibility check 
is permitted. 

Step 8: The user container usage and compatibility are checked on a regular basis, and the 
appropriate allocation is carried out. 

 

Begin 
{ 
 Read: sequential jobs 
 Set: i=0// assign starting job for process 
 Initialize: container =0 //initialize container for job scheduling 
Do 
{ 
   While (cache available)  
       { 
         user and container subscription 
         optimized job scheduling 
         container switching 
         container clearance 
         deep learning of feedback 
                 If container usage greater than threshold 
                       user container compatibility check 
                           If compatible then map container  
                               learn user and container usage 
                           End if 
                 End if 
         } 
} Until (EOF) 
}  
 
 



1266                                                                                           Muthakshi S et al.: Long-Term Container Allocation via Optimized  
Task Scheduling Through Deep Learning (OTS-DL) And High-Level Security 

Algorithm 2. Implementation 

Step 1: In algorithm 2, the job scheduling is processed considering the user data size. 

Step 2: The jobs are assigned for container allocation. 

Step 3: Then, the containers are set for performing the job scheduling process. 

Step 4: Then the frequency of the job is noted. The most repeated and preferable jobs are 
segregated. 

Step 5: The frequent jobs are checked for micro or macro tasks. 

Step 6: The most frequent jobs are allocated to long-term containers, considering the macro 
and micro tasks. 

Step 7: The non-frequent tasks are allocated to the short-term container itself. 

 

 

Algorithm 2.   Algorithm for Short-Term and Long-Term Container. 
Input:  Input data allocation 
Output:  Allocation with efficient container Convergence 
Begin 
{ 
 Read: sequential jobs 
 Set: i=0// assign starting job for process 
 Initialize: container =0 //initialize container for job scheduling 
Do 
{ 
   While (job frequency)  
       {  
           Check for micro or macro task 
                 If frequency greater than threshold 
                       Allocate long term container 
                  Else  
                        Allocate short term container  
      } 
} Until (EOF) 
}  
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Algorithm 3: Implementation 

In the above algorithm, the security measures are processed when the container convergence 
method is opted for. 

Step 1: In algorithm 3, the job scheduling is processed considering the user data size. 

Step 2: The jobs are assigned for container allocation. 

Step 3: Then, the containers are set for performing the job scheduling process. 

Step 4: Then, the containers with jobs are monitored regularly. 

Step 5: If any inconvenience or congestion occurs, the security system is activated. 

Step 6: When an attack is detected, fault tolerance and the ECC technique are selected. 

Step 7: Ensure secure user data allocation and proper container allocation. 

Algorithm 3.   Defense algorithm through container convergence 
Input:  Input data allocation 
Output: Allocation with efficient container Convergence 
Begin 
{ 
 Read: sequential jobs 
 Set: i=0// assign starting job for process 
 Initialize: container =0 //initialize container for job scheduling 
Do 
{ 
   While (container monitoring)  
       {  
                 If congestion occurs 
                      { 
                       If attack detected 
                           Security container convergence 
                       else  
                           process container convergence 
                        } 
                        Container recovery 
                 End if 
      } 
} Until (EOF) 
} 
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3.3 High-level Security 
The goal of the system is to provide a high-level of security for containers in the cloud. The 
previous method has been adapted for several security-based techniques. But handling the 
major attacks, like DoS attacks, is always a challenging task. A denial-of-service (DoS) attack 
is very dangerous and causes loads of network traffic by crashing services. 
 
Reputation by container Robustness 
 
Considering the storage capacity of the user, the containers are assigned and allocated. Some 
attackers perform fraudulent activities by injecting threats or unwanted data into the middle of 
the execution. The undesirable data entry is unknown to both the container and the user. The 
container, as usual, accelerates the capacity and occupies maximum storage. The fraud activity 
spoils the reputation of the cloud container and the CSP that recommends the container to the 
user. Hence, the relationship between the CSP and the user is affected. 

To overcome all the above-mentioned security issues, the system has proposed a new 
high-level security theory, adopting searchable encryption and fault tolerance. Generally, 
there are several techniques to encrypt and store data in a container. But maintaining the data 
and producing it to the owner without any interruption or attack has become more challenging. 
To resolve the issue, the system has implemented a high-level security deal to handle DoS 
attacks. 

The following stages are followed to handle the unwanted blockage from several attacks: 

a) Container Split Technique 

To enhance security, the system uses encryption and container split technique. To divert the 
attackers’ attention and destroy the pattern flow, the system uses multiple containers for job 
and resource allocation. 

     If a job needs high-end security, then a swap technique is used that performs a job 
scheduling swap inside the container. To provide more confidentiality for each container, 
various types of encryption and decryption combinations of algorithms are used.  

b) Cache Memory Maintenance for Fault Tolerance 

At this stage, each container is maintained with a cache memory space. When an attack or 
error enters and creates any unwanted traffic for space occupation, the cache memory space is 
used to evaluate the unwanted data, predict the source of the error, and block it immediately. 

c) Security Monitoring 

At this stage, the incoming and outgoing data have been well examined. The origin of the user 
is checked to see if the data is from a trustworthy owner or not. By using the searchable 
encryption method, the authorized users are matched, and the task scheduling encryption and 
decryption are performed. The details of the data are monitored, collected, and reported 
continuously. If any abnormal activity is detected, the entire data valuation from the source 
and their inter-connected networks are also verified. If any kind of disruption is noted in the 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 4, April 2023                           1269 

source networks, then that particular connection is disconnected, and the other task scheduling 
work is resumed. 

d) Container Convergence 

The Container Convergence method is chosen to eliminate the attacks. In the ongoing process, 
if any type of attack is detected, the other containers converge and form a strong bond to 
overcome the particular attack. Further, by initiating a fault tolerance method, any type of 
error or attack can be detected and rectified easily. Finally, by implementing the 
above-mentioned methods, the security is maintained, and data can be securely recovered 
from the container. 

e) Fake Value Replacement 

Finally, the original data in the container is replaced with some other random fake values, and 
then the data clearance is performed. When attackers try to recover the user data, only the 
faked and replaced values can be retained, not the original data. This enhances security at a 
higher level. 

4.  Result analysis 

In the result analysis, a comparison of all the existing algorithms with the proposed model is 
done. 

A multimedia dataset from Kaggle is taken and produced by Jaafar Bendriss. A deep 
learning-based SLA management for NFV-based services.  
Forecasting and anticipating SLO breaches in programmable networks are used. The system 
uses cognitive 5G networks: comprehensive operator use cases with machine learning for 
management operations. 

In Fig. 2, the comparison of existing algorithms, such as the PSO approach and locality 
aware scheduling, is done with the proposed OTS-DL algorithm. PSO is the Particle Swarm 
Optimization (PSO) used for optimizing the job, which is not efficient.  In the comparison, 
OTS-DL From  Fig. 3, the overall comparison of the proposed algorithm (OTS-DL) with the 
existing algorithms such as multi-objective NSGA-11, self-adapting, and ant colony 
algorithms is made. 
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Fig. 2. Existing vs. Proposed System 
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Fig. 3. Existing vs. Proposed Algorithm 
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The proposed algorithm, OTS-DL, is proven to be the optimal solution in terms of accuracy, 
allocation speed, security, and overall performance. 
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Fig. 4. System Utilization Existing vs. Proposed  

In the above graph, Fig. 4, the utilization rate is shown. GRSA is a service-aware flow 
scheduler for cloud storage used in data centre networks that lack time and speed. The time 
interval between the existing and proposed systems is being deliberated. 
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Fig. 5. Average transmission speed Existing vs. Proposed 

In Fig. 5, the average transmission speed is estimated. Here the transmission speed, upload 
time, and download time are compared. The proposed system proves to be faster. 
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Fig. 6. Average Container Scheduling Existing vs. Proposed 

In Fig. 6, the scheduling and accuracy rates are compared, and, from the comparison with the 
integration model, the proposed OTS-DL model proves to be better in accuracy. 

5.  Conclusion 
In the cloud, job scheduling and resource allocation are the most challenging tasks to be 
handled by the cloud service provider. The paper introduces a new novel theory known as the 
Optimized Task Scheduling Algorithm via Deep Learning (OTS-DL). The algorithm 
segregates the containers into long-term and short-term containers and allocates the tasks 
according to the availability of the containers. Simultaneously, the micro-task and macro-task 
dependencies are classified using deep neural learning, and priority is provided accordingly. 
Moreover, container split and searchable encryption security monitoring are used to enhance 
security and provide high confidentiality for the resources. The proposed method provides an 
optimal solution in terms of the parameters of accuracy of the operations, allocation speed of 
the resources, security, and overall performance. The transmission rate is high when compared 
to the existing methods. Hence, the method maintains the efficiency, speed, and accuracy of 
task scheduling and resource allocation. In conclusion, the overall performance can be 
increased by using the proposed method, thereby facilitating the scientific community in 
various ways like power consumption, etc.  The proposed method has been deployed in a 
contained environment. There may be a certain challenge when the method is deployed in a 
real time environment. In the future, security measures will be tested in real-time applications, 
and more optimized algorithms will be used to attain greater speed. 
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